You are reading the article Machine Learning Vs Predictive Modelling updated in September 2023 on the website Uyenanhthammy.com. We hope that the information we have shared is helpful to you. If you find the content interesting and meaningful, please share it with your friends and continue to follow and support us for the latest updates. Suggested October 2023 Machine Learning Vs Predictive Modelling
Differences Between Machine Learning and Predictive ModellingStart Your Free Data Science Course
Hadoop, Data Science, Statistics & others
In this post, we are going to study in detail about the differences.
Head-to-Head Comparison Between Machine Learning vs Predictive Modelling (Infographics)Below is the top 8 Comparison between Machine Learning and Predictive Modelling:
Key Differences Between Machine Learning and Predictive ModellingBelow are the lists of points describe the key differences between Machine Learning and Predictive Modelling:
Machine learning is an AI technique where the algorithms are given data and are asked to process without a predetermined set of rules and regulations whereas Predictive analysis is the analysis of historical data as well as existing external data to find patterns and behaviors.
Machine learning algorithms are trained to learn from their past mistakes to improve future performance whereas predictive makes informed predictions based upon historical data about future events only.
Machine learning is a new generation technology that works on better algorithms and massive amounts of data, whereas predictive analysis is the study and not a particular technology that existed long before Machine learning came into existence. Alan Turing had already made used of this technique to decode the messages during world war II.
Related practices and learning techniques for machine learning include Supervised and unsupervised learning, while for predictive analysis it is Descriptive analysis, Diagnostic analysis, Predictive analysis, Prescriptive analysis, etc.
Once our machine learning model is trained and tested for a relatively smaller dataset, then the same method can be applied to hidden data. The data effectively need not be biased as it would result in bad decision-making. In the case of predictive analysis, data is useful when it is complete, accurate, and substantial. Data quality needs to be taken care of when data is ingested initially. Organizations use this to predict forecasts and consumer behaviors and make rational decisions based on their findings. A successful case will surely result in boosting business and the firm’s revenues.
Machine Learning vs Predictive Modelling Comparison TableFollowing is the list of points that show the comparison between Machine Learning and Predictive Modelling.
Basis for Comparison
Predictive Modeling
Definition The method used to devise complex algorithms and models that lend themselves to prediction. This is the core principle behind predictive modeling.
Modus Operandi An adaptive technique is where the systems are smart enough to adapt and learn as and when a new set of data is added without the need of being directly programmed. Previous calculations will be used to provide effective results. Models are known to make use of classifiers and detection theory to guess the probability of an outcome given a set of input data.
Approaches and Models
Decision tree learning
Associate rule learning
Artificial neural networks
Deep learning
Inductive logic programming
Support vector machines
Clustering
Bayesian networks
Reinforcement learning
Representation learning
Similarity and metric learning
Sparse dictionary learning
Genetic algorithms
Rule-based machine learning
Learning classifier systems
Group method of data handling
Naïve Bayes
K-nearest neighbor algorithm
Majority classifier
Support vector machines
Boosted trees
Random forests
CART(Classification and Regression trees)
MARS
Neural Networks
ACE and AVAS
Ordinary Least Squares
Generalized Linear Models (GLM)
Logistic regression
Generalized additive models
Robust Regression
Semiparametric regression
Applications
Bioinformatics
Brain-machine interfaces
Classifying DNA sequences
Computational anatomy
Computer vision
Object recognition
Detecting credit card fraud
Internet fraud detection
Linguistics
Marketing
Machine perception
Medical diagnosis
Economics
Insurance
NLP
Optimization and metaheuristic
Recommendation and search engines
Robot locomotives
Sequence mining
Sentiment analysis
Speech and handwriting recognition
Financial market analysis
Time series forecasting
Uplift modeling
Archaeology
Customer relationship management
Auto insurance
Healthcare
Algorithmic trading
Notable features of predictive modeling
Limitations on data fitting
Marketing campaigns optimization
Fraud detection
Risk reduction
Improved and streamlined operations
Customer retention
Sales funnel insights
Crisis Management
Risk mitigation and corrective measures
Disaster Management
Customer segmentation
Churn prevention
Financial modeling
Market trend and analysis
Credit scoring
Update Handling A statistical model is updated automatically Data scientists need to run the model manually multiple times
Requirement Clarification A proper set of requirements and business justifications need to be provided A proper set of business justifications and requirements needs to be clarified
Driving Technology Machine learning is data-driven Predictive modeling is used in case driven
Drawbacks
Work with discontinuous loss functions which are hard to differentiate, optimize and incorporate in machine learning algorithms.
The problem needs to be very descriptive to find the right algorithm in order to apply an ML solution.
Large data requirements and training data, such as deep learning data, need to be created before that algorithm is put to some actual use.
The need for a huge amount of data, as the more historical data, accurate is the outcome.
Need all past trends and patterns.
Polling prediction failure takes into view a specific set of parameters that are not real-time, and hence the current scenarios can influence the polling.
A lack of understanding of Human Behavior hampers HR analytics
ConclusionFollow our blog for more Big data and current technology-based articles.
Recommended ArticlesThis has been a guide to Machine Learning vs Predictive Modelling. Here we have discussed Machine Learning vs Predictive Modelling head-to-head comparison, key differences along with infographics and comparison table. You may also look at the following articles to learn more –
You're reading Machine Learning Vs Predictive Modelling
Update the detailed information about Machine Learning Vs Predictive Modelling on the Uyenanhthammy.com website. We hope the article's content will meet your needs, and we will regularly update the information to provide you with the fastest and most accurate information. Have a great day!